Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.

Identifieur interne : 003A99 ( Main/Exploration ); précédent : 003A98; suivant : 003B00

Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.

Auteurs : Barbara Montanini [France] ; Damien Blaudez ; Sylvain Jeandroz ; Dale Sanders ; Michel Chalot

Source :

RBID : pubmed:17448255

Descripteurs français

English descriptors

Abstract

BACKGROUND

The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters.

RESULTS

Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed.

CONCLUSION

In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members.


DOI: 10.1186/1471-2164-8-107
PubMed: 17448255
PubMed Central: PMC1868760


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.</title>
<author>
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Université, Vandoeuvre, France. barbara.montanini@nemo.unipr.it </nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Université, Vandoeuvre</wicri:regionArea>
<wicri:noRegion>Vandoeuvre</wicri:noRegion>
<orgName type="university">Nancy-Université</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
</author>
<author>
<name sortKey="Jeandroz, Sylvain" sort="Jeandroz, Sylvain" uniqKey="Jeandroz S" first="Sylvain" last="Jeandroz">Sylvain Jeandroz</name>
</author>
<author>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</author>
<author>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17448255</idno>
<idno type="pmid">17448255</idno>
<idno type="doi">10.1186/1471-2164-8-107</idno>
<idno type="pmc">PMC1868760</idno>
<idno type="wicri:Area/Main/Corpus">003B75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003B75</idno>
<idno type="wicri:Area/Main/Curation">003B75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003B75</idno>
<idno type="wicri:Area/Main/Exploration">003B75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.</title>
<author>
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Université, Vandoeuvre, France. barbara.montanini@nemo.unipr.it </nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Université, Vandoeuvre</wicri:regionArea>
<wicri:noRegion>Vandoeuvre</wicri:noRegion>
<orgName type="university">Nancy-Université</orgName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
</author>
<author>
<name sortKey="Jeandroz, Sylvain" sort="Jeandroz, Sylvain" uniqKey="Jeandroz S" first="Sylvain" last="Jeandroz">Sylvain Jeandroz</name>
</author>
<author>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</author>
<author>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaea (physiology)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Biological Transport (genetics)</term>
<term>Cadmium (metabolism)</term>
<term>Cation Transport Proteins (classification)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Cations (metabolism)</term>
<term>Cobalt (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Eukaryotic Cells (physiology)</term>
<term>Humans (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Manganese (metabolism)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Archéobactéries (physiologie)</term>
<term>Cadmium (métabolisme)</term>
<term>Cations (métabolisme)</term>
<term>Cellules eucaryotes (physiologie)</term>
<term>Cobalt (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Manganèse (métabolisme)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Protéines végétales (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Transport biologique (génétique)</term>
<term>Transporteurs de cations (classification)</term>
<term>Transporteurs de cations (métabolisme)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Cation Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Cation Transport Proteins</term>
<term>Cations</term>
<term>Cobalt</term>
<term>Iron</term>
<term>Manganese</term>
<term>Metals, Heavy</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biological Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cadmium</term>
<term>Cations</term>
<term>Cobalt</term>
<term>Fer</term>
<term>Manganèse</term>
<term>Métaux lourds</term>
<term>Transporteurs de cations</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Archéobactéries</term>
<term>Cellules eucaryotes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Archaea</term>
<term>Eukaryotic Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bacterial Physiological Phenomena</term>
<term>Conserved Sequence</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Plant Proteins</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Phylogenèse</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Protéines végétales</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17448255</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2007</Year>
<Month>Apr</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.</ArticleTitle>
<Pagination>
<MedlinePgn>107</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Montanini</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Université, Vandoeuvre, France. barbara.montanini@nemo.unipr.it </Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blaudez</LastName>
<ForeName>Damien</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jeandroz</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sanders</LastName>
<ForeName>Dale</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chalot</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002412">Cations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3G0H8C9362</RegistryNumber>
<NameOfSubstance UI="D003035">Cobalt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="N">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002412" MajorTopicYN="N">Cations</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003035" MajorTopicYN="N">Cobalt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17448255</ArticleId>
<ArticleId IdType="pii">1471-2164-8-107</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-8-107</ArticleId>
<ArticleId IdType="pmc">PMC1868760</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Ind Microbiol. 1995 Feb;14(2):186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14934-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8962159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1997 Mar 15;156(2):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9075641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Nov;17(3):292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9354792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 7;272(45):28485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Nov;186(22):7499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Dec;186(23):8036-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15547276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2005 Jan;183(1):9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2005 Jun;32(6):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15889311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 1;579(19):4165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16038907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 5;280(31):28811-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30956-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 7;280(40):33716-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):861-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 18;281(33):23492-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2002 May;34(5):487-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Nov;181(22):6876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Dec;277(6 Pt 1):G1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 4;275(31):23927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):5036-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11058603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1646-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9995-10000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11481436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Oct;67(10):4573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11571158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2001 Sep-Dec;14(3-4):251-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Mar;214(5):783-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jul;45(1):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12100555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 19;277(29):26389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 18;277(42):39187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Oct 8;215(2):273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 7;278(6):4096-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 May;15(5):1131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):313-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Dec;54(393):2601-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jan;61(1):49-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12043-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 25;279(26):27807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(2):237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 17;279(38):39251-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1989 Oct;219(1-2):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2693940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jun 5;256(5062):1443-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1604319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Sep;12(9):3678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1508175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1994 Apr;10(2):189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Feb 15;14(4):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7882967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 17;277(20):18215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11886869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):19049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):1784-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
</settlement>
<orgName>
<li>Nancy-Université</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Blaudez, Damien" sort="Blaudez, Damien" uniqKey="Blaudez D" first="Damien" last="Blaudez">Damien Blaudez</name>
<name sortKey="Chalot, Michel" sort="Chalot, Michel" uniqKey="Chalot M" first="Michel" last="Chalot">Michel Chalot</name>
<name sortKey="Jeandroz, Sylvain" sort="Jeandroz, Sylvain" uniqKey="Jeandroz S" first="Sylvain" last="Jeandroz">Sylvain Jeandroz</name>
<name sortKey="Sanders, Dale" sort="Sanders, Dale" uniqKey="Sanders D" first="Dale" last="Sanders">Dale Sanders</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Montanini, Barbara" sort="Montanini, Barbara" uniqKey="Montanini B" first="Barbara" last="Montanini">Barbara Montanini</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17448255
   |texte=   Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17448255" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020